raft在etcd中的实现
raft是一个在分布式系统中维护状态一致的协议,本文通过etcd中的实现呢,理解他的思想
Raft概述
raft是一个在分布式系统中维护状态一致的协议
- 动画演示:http://thesecretlivesofdata.com/raft/
- 论文:https://raft.github.io/raft.pdf
- lecture:https://github.com/maemual/raft-zh_cn
源码阅读(latest)
➜ raft git:(master) tree --dirsfirst -L 2 -I '*test*' -P '*.go'
.
├── confchange
│ ├── confchange.go
│ └── restore.go
├── quorum
│ ├── joint.go
│ ├── majority.go
│ ├── quorum.go
│ └── voteresult_string.go
├── raftpb
│ ├── confchange.go
│ ├── confstate.go
│ └── raft.pb.go
├── tracker
│ ├── inflights.go
│ ├── progress.go
│ ├── state.go
│ └── tracker.go
├── bootstrap.go
├── doc.go
├── log.go
├── log_unstable.go
├── logger.go
├── node.go
├── raft.go
├── rawnode.go
├── read_only.go
├── status.go
├── storage.go
└── util.go
raftpb
Raft中的序列化是借助于Protocol Buffer来实现的,这个文件夹就定义了需要序列化的几个数据结构,从Entry
和Message
开始看起
Entry
type Entry struct {
Term uint64 `protobuf:"varint,2,opt,name=Term" json:"Term"`
Index uint64 `protobuf:"varint,3,opt,name=Index" json:"Index"`
Type EntryType `protobuf:"varint,1,opt,name=Type,enum=raftpb.EntryType" json:"Type"`
Data []byte `protobuf:"bytes,4,opt,name=Data" json:"Data,omitempty"`
}
- Term:选举任期,每次选举之后递增1。它的主要作用是标记信息的时效性,比方说当一个节点发出来的消息中携带的term是2,而另一个节点携带的term是3,那我们就认为第一个节点的信息过时了。
- Index:当前这个entry在整个raft日志中的位置索引。有了
Term
和Index
之后,一个log entry就能被唯一标识。 - Type:当前entry的类型,目前etcd支持两种类型:EntryNormal和EntryConfChange,EntryNormal代表当前Entry是对状态机的操作,EntryConfChange则代表对当前集群配置进行更改的操作,比如增加或者减少节点。
- Data:一个被序列化后的byte数组,代表当前entry真正要执行的操作,比方说如果上面的
Type
是EntryNormal
,那这里的Data就可能是具体要更改的key-value pair,如果Type
是EntryConfChange
,那Data就是具体的配置更改项ConfChange。raft算法本身并不关心这个数据是什么,它只是把这段数据当做log同步过程中的payload来处理,具体对这个数据的解析则有上层应用来完成。
Message
type Message struct {
Type MessageType `protobuf:"varint,1,opt,name=type,enum=raftpb.MessageType" json:"type"`
To uint64 `protobuf:"varint,2,opt,name=to" json:"to"`
From uint64 `protobuf:"varint,3,opt,name=from" json:"from"`
Term uint64 `protobuf:"varint,4,opt,name=term" json:"term"`
// logTerm is generally used for appending Raft logs to followers. For example,
// (type=MsgApp,index=100,logTerm=5) means leader appends entries starting at
// index=101, and the term of entry at index 100 is 5.
// (type=MsgAppResp,reject=true,index=100,logTerm=5) means follower rejects some
// entries from its leader as it already has an entry with term 5 at index 100.
LogTerm uint64 `protobuf:"varint,5,opt,name=logTerm" json:"logTerm"`
Index uint64 `protobuf:"varint,6,opt,name=index" json:"index"`
Entries []Entry `protobuf:"bytes,7,rep,name=entries" json:"entries"`
Commit uint64 `protobuf:"varint,8,opt,name=commit" json:"commit"`
Snapshot Snapshot `protobuf:"bytes,9,opt,name=snapshot" json:"snapshot"`
Reject bool `protobuf:"varint,10,opt,name=reject" json:"reject"`
RejectHint uint64 `protobuf:"varint,11,opt,name=rejectHint" json:"rejectHint"`
Context []byte `protobuf:"bytes,12,opt,name=context" json:"context,omitempty"`
}
-
Type:当前传递的消息类型,它的取值有
很多个
,但大致可以分成两类:
- Raft 协议相关的,包括心跳MsgHeartbeat、日志MsgApp、投票消息MsgVote等。
- 上层应用触发的(没错,上层应用并不是通过api与raft库交互的,而是通过发消息),比如应用对数据更改的消息MsgProp(osal)。
不同类型的消息会用到下面不同的字段:
- To, From分别代表了这个消息的接受者和发送者。
- Term:这个消息发出时整个集群所处的任期。
- LogTerm:消息发出者所保存的日志中最后一条的任期号,一般
MsgVote
会用到这个字段。 - Index:日志索引号。如果当前消息是
MsgVote
的话,代表这个candidate最后一条日志的索引号,它跟上面的LogTerm
一起代表这个candidate所拥有的最新日志信息,这样别人就可以比较自己的日志是不是比candidata的日志要新,从而决定是否投票。 - Entries:需要存储的日志。
- Commit:已经提交的日志的索引值,用来向别人同步日志的提交信息。
- Snapshot:一般跟
MsgSnap
合用,用来放置具体的Snapshot值。 - Reject,RejectHint:代表对方节点拒绝了当前节点的请求(MsgVote/MsgApp/MsgSnap…)
log_unstable.go
unstable数据结构用于还没有被用户层持久化的数据,它维护了两部分内容snapshot
和entries
// unstable.entries[i] has raft log position i+unstable.offset.
// Note that unstable.offset may be less than the highest log
// position in storage; this means that the next write to storage
// might need to truncate the log before persisting unstable.entries.
type unstable struct {
// the incoming unstable snapshot, if any.
snapshot *pb.Snapshot
// all entries that have not yet been written to storage.
entries []pb.Entry
offset uint64
logger Logger
}
entries
代表的是要进行操作的日志,但日志不可能无限增长,在特定的情况下,某些过期的日志会被清空。那这就引入一个新问题了,如果此后一个新的follower
加入,而leader
只有一部分操作日志,那这个新follower
不是没法跟别人同步了吗?所以这个时候snapshot
就登场了 - 我无法给你之前的日志,但我给你所有之前日志应用后的结果,之后的日志你再以这个snapshot
为基础进行应用,那我们的状态就可以同步了。因此它们的结构关系可以用下图表示:
这里的前半部分是快照数据,而后半部分是日志条目组成的数组entries,另外unstable.offset成员保存的是entries数组中的第一条数据在raft日志中的索引,即第i条entries在raft日志中的索引为i + unstable.offset
。
storage.go
这个文件定义了一个Storage接口,因为etcd中的raft实现并不负责数据的持久化,所以它希望上面的应用层能实现这个接口,以便提供给它查询log的能力。
另外,这个文件也提供了Storage
接口的一个内存版本的实现MemoryStorage,这个实现同样也维护了snapshot
和entries
这两部分,他们的排列跟unstable
中的类似,也是snapshot
在前,entries
在后。从代码中看来etcdserver
和raftexample
都是直接用的这个实现来提供log的查询功能的
log.go
有了以上的介绍unstable、Storage的准备之后,下面可以来介绍raftLog的实现,这个结构体承担了raft日志相关的操作。
raftLog由以下成员组成:
- storage Storage:前面提到的存放已经持久化数据的Storage接口。
- unstable unstable:前面分析过的unstable结构体,用于保存应用层还没有持久化的数据。
- committed uint64:保存当前提交的日志数据索引。
- applied uint64:保存当前传入状态机的数据最高索引。
需要说明的是,一条日志数据,首先需要被提交(committed)成功,然后才能被应用(applied)到状态机中。因此,以下不等式一直成立:applied <= committed
。
raftLog结构体中,几部分数据的排列如下图所示:
这个数据排布的情况,可以从raftLog的初始化函数中看出来:
// newLogWithSize returns a log using the given storage and max
// message size.
func newLogWithSize(storage Storage, logger Logger, maxNextEntsSize uint64) *raftLog {
if storage == nil {
log.Panic("storage must not be nil")
}
log := &raftLog{
storage: storage,
logger: logger,
maxNextEntsSize: maxNextEntsSize,
}
firstIndex, err := storage.FirstIndex()
if err != nil {
panic(err) // TODO(bdarnell)
}
lastIndex, err := storage.LastIndex()
if err != nil {
panic(err) // TODO(bdarnell)
}
log.unstable.offset = lastIndex + 1
log.unstable.logger = logger
// Initialize our committed and applied pointers to the time of the last compaction.
log.committed = firstIndex - 1
log.applied = firstIndex - 1
return log
}
因此,从这里的代码可以看出,raftLog的两部分,持久化存储和非持久化存储,它们之间的分界线就是lastIndex,在此之前都是Storage
管理的已经持久化的数据,而在此之后都是unstable
管理的还没有持久化的数据。
以上分析中还有一个疑问,为什么并没有初始化unstable.snapshot成员,也就是unstable结构体的快照数据?原因在于,上面这个是初始化函数,也就是节点刚启动的时候调用来初始化存储状态的函数,而unstable.snapshot数据,是在启动之后同步数据的过程中,如果需要同步快照数据时才会去进行赋值修改的数据,因此在这里并没有对它进行操作的地方。
type Progress struct {
Match, Next uint64
// State defines how the leader should interact with the follower.
//
// When in StateProbe, leader sends at most one replication message
// per heartbeat interval. It also probes actual progress of the follower.
//
// When in StateReplicate, leader optimistically increases next
// to the latest entry sent after sending replication message. This is
// an optimized state for fast replicating log entries to the follower.
//
// When in StateSnapshot, leader should have sent out snapshot
// before and stops sending any replication message.
State StateType
// PendingSnapshot is used in StateSnapshot.
// If there is a pending snapshot, the pendingSnapshot will be set to the
// index of the snapshot. If pendingSnapshot is set, the replication process of
// this Progress will be paused. raft will not resend snapshot until the pending one
// is reported to be failed.
PendingSnapshot uint64
// RecentActive is true if the progress is recently active. Receiving any messages
// from the corresponding follower indicates the progress is active.
// RecentActive can be reset to false after an election timeout.
//
// TODO(tbg): the leader should always have this set to true.
RecentActive bool
// ProbeSent is used while this follower is in StateProbe. When ProbeSent is
// true, raft should pause sending replication message to this peer until
// ProbeSent is reset. See ProbeAcked() and IsPaused().
ProbeSent bool
// Inflights is a sliding window for the inflight messages.
// Each inflight message contains one or more log entries.
// The max number of entries per message is defined in raft config as MaxSizePerMsg.
// Thus inflight effectively limits both the number of inflight messages
// and the bandwidth each Progress can use.
// When inflights is Full, no more message should be sent.
// When a leader sends out a message, the index of the last
// entry should be added to inflights. The index MUST be added
// into inflights in order.
// When a leader receives a reply, the previous inflights should
// be freed by calling inflights.FreeLE with the index of the last
// received entry.
Inflights *Inflights
// IsLearner is true if this progress is tracked for a learner.
IsLearner bool
}
-
用来保存当前follower节点的日志状态的属性:
- Match:保存目前为止,已复制给该follower的日志的最高索引值。如果leader对该follower上的日志情况一无所知的话,这个值被设为0。
- Next:保存下一次leader发送append消息给该follower的日志索引,即下一次复制日志时,leader会从
Next
开始发送日志。
在正常情况下,
Next = Match + 1
,也就是下一个要同步的日志应当是对方已有日志的下一条。 -
State
属性用来保存该节点当前的同步状态,它会有一下几种取值3:- ProgressStateProbe
探测状态,当follower拒绝了最近的append消息时,那么就会进入探测状态,此时leader会试图继续往前追溯该follower的日志从哪里开始丢失的。在probe状态时,leader每次最多append一条日志,如果收到的回应中带有
RejectHint
信息,则回退Next
索引,以便下次重试。在初始时,leader会把所有follower的状态设为probe,因为它并不知道各个follower的同步状态,所以需要慢慢试探。- ProgressStateReplicate
当leader确认某个follower的同步状态后,它就会把这个follower的state切换到这个状态,并且用
pipeline
的方式快速复制日志。leader在发送复制消息之后,就修改该节点的Next
索引为发送消息的最大索引+1。- ProgressStateSnapshot
接收快照状态。当leader向某个follower发送append消息,试图让该follower状态跟上leader时,发现此时leader上保存的索引数据已经对不上了,比如leader在index为10之前的数据都已经写入快照中了,但是该follower需要的是10之前的数据,此时就会切换到该状态下,发送快照给该follower。当快照数据同步追上之后,并不是直接切换到Replicate状态,而是首先切换到Probe状态。
-
ins
属性用来做流量控制,因为如果同步请求非常多,再碰上网络分区时,leader可能会累积很多待发送消息,一旦网络恢复,可能会有非常大流量发送给follower,所以这里要做flow control。它的实现有点类似TCP的滑动窗口,这里不再赘述。
综上,Progress
其实也是个状态机,下面是它的状态转移图
node.go
node
的主要作用是应用层(etcdserver)和共识模块(raft)的衔接。将应用层的消息传递给底层共识模块,并将底层共识模块共识后的结果反馈给应用层。所以它的初始化函数创建了很多用来通信的channel
,然后就在另一个goroutine
里面开始了事件循环,不停的在各种channel
中倒腾数据(貌似这种由for-select-channel
组成的事件循环在Go里面很受欢迎)
for {
if advancec != nil {
readyc = nil
} else if n.rn.HasReady() {
// Populate a Ready. Note that this Ready is not guaranteed to
// actually be handled. We will arm readyc, but there's no guarantee
// that we will actually send on it. It's possible that we will
// service another channel instead, loop around, and then populate
// the Ready again. We could instead force the previous Ready to be
// handled first, but it's generally good to emit larger Readys plus
// it simplifies testing (by emitting less frequently and more
// predictably).
rd = n.rn.readyWithoutAccept()
readyc = n.readyc
}
if lead != r.lead {
if r.hasLeader() {
if lead == None {
r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term)
} else {
r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term)
}
propc = n.propc
} else {
r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term)
propc = nil
}
lead = r.lead
}
select {
// TODO: maybe buffer the config propose if there exists one (the way
// described in raft dissertation)
// Currently it is dropped in Step silently.
case pm := <-propc:
m := pm.m
m.From = r.id
err := r.Step(m)
if pm.result != nil {
pm.result <- err
close(pm.result)
}
case m := <-n.recvc:
// filter out response message from unknown From.
if pr := r.prs.Progress[m.From]; pr != nil || !IsResponseMsg(m.Type) {
r.Step(m)
}
case cc := <-n.confc:
_, okBefore := r.prs.Progress[r.id]
cs := r.applyConfChange(cc)
// If the node was removed, block incoming proposals. Note that we
// only do this if the node was in the config before. Nodes may be
// a member of the group without knowing this (when they're catching
// up on the log and don't have the latest config) and we don't want
// to block the proposal channel in that case.
//
// NB: propc is reset when the leader changes, which, if we learn
// about it, sort of implies that we got readded, maybe? This isn't
// very sound and likely has bugs.
if _, okAfter := r.prs.Progress[r.id]; okBefore && !okAfter {
var found bool
outer:
for _, sl := range [][]uint64{cs.Voters, cs.VotersOutgoing} {
for _, id := range sl {
if id == r.id {
found = true
break outer
}
}
}
if !found {
propc = nil
}
}
select {
case n.confstatec <- cs:
case <-n.done:
}
case <-n.tickc:
n.rn.Tick()
case readyc <- rd:
n.rn.acceptReady(rd)
advancec = n.advancec
case <-advancec:
n.rn.Advance(rd)
rd = Ready{}
advancec = nil
case c := <-n.status:
c <- getStatus(r)
case <-n.stop:
close(n.done)
return
}
}
propc
和recvc
中拿到的是从上层应用传进来的消息,这个消息会被交给raft层的Step
函数处理,具体处理逻辑我上面有过介绍。
下面来解释下readyc
的作用。在etcd的这个实现中,node
并不负责数据的持久化、网络消息的通信、以及将已经提交的log应用到状态机中,所以node
使用readyc
这个channel
对外通知有数据要处理了,并将这些需要外部处理的数据打包到一个Ready
结构体中:
// Ready encapsulates the entries and messages that are ready to read,
// be saved to stable storage, committed or sent to other peers.
// All fields in Ready are read-only.
type Ready struct {
// The current volatile state of a Node.
// SoftState will be nil if there is no update.
// It is not required to consume or store SoftState.
*SoftState
// The current state of a Node to be saved to stable storage BEFORE
// Messages are sent.
// HardState will be equal to empty state if there is no update.
pb.HardState
// ReadStates can be used for node to serve linearizable read requests locally
// when its applied index is greater than the index in ReadState.
// Note that the readState will be returned when raft receives msgReadIndex.
// The returned is only valid for the request that requested to read.
ReadStates []ReadState
// Entries specifies entries to be saved to stable storage BEFORE
// Messages are sent.
Entries []pb.Entry
// Snapshot specifies the snapshot to be saved to stable storage.
Snapshot pb.Snapshot
// CommittedEntries specifies entries to be committed to a
// store/state-machine. These have previously been committed to stable
// store.
CommittedEntries []pb.Entry
// Messages specifies outbound messages to be sent AFTER Entries are
// committed to stable storage.
// If it contains a MsgSnap message, the application MUST report back to raft
// when the snapshot has been received or has failed by calling ReportSnapshot.
Messages []pb.Message
// MustSync indicates whether the HardState and Entries must be synchronously
// written to disk or if an asynchronous write is permissible.
MustSync bool
}
应用程序得到这个Ready
之后,需要:
- 将HardState, Entries, Snapshot持久化到storage。
- 将Messages广播给其他节点。
- 将CommittedEntries(已经commit还没有apply)应用到状态机。
- 如果发现CommittedEntries中有成员变更类型的entry,调用
node.ApplyConfChange()
方法让node
知道。 - 最后再调用
node.Advance()
告诉raft,这批状态更新处理完了,状态已经演进了,可以给我下一批Ready让我处理。
Life of a Request
前面我们把整个包的结构过了一遍,下面来结合具体的代码看看raft对一个请求的处理过程是怎样的。我一直觉得,如果能从代码的层面追踪到一个请求的处理过程,那无论是从宏观还是微观的角度,对理解整个系统都是非常有帮助的。
-
首先,在
node
的大循环里,有一个会定时输出的tick channel
,它来触发raft.tick()
函数,根据上面的介绍可知,如果当前节点是follower,那它的tick
函数会指向tickElection
。tickElection
的处理逻辑是给自己发送一个MsgHup
的内部消息,Step
函数看到这个消息后会调用campaign
函数,进入竞选状态。// tickElection is run by followers and candidates after r.electionTimeout. func (r *raft) tickElection() { r.electionElapsed++ if r.promotable() && r.pastElectionTimeout() { r.electionElapsed = 0 r.Step(pb.Message{From: r.id, Type: pb.MsgHup}) } } func (r *raft) Step(m pb.Message) error { //... switch m.Type { case pb.MsgHup: r.campaign(campaignElection) } }
-
campaign
则会调用becomeCandidate
把自己切换到candidate模式,并递增Term
值。然后再将自己的Term
及日志信息发送给其他的节点,请求投票。// campaign transitions the raft instance to candidate state. This must only be // called after verifying that this is a legitimate transition. func (r *raft) campaign(t CampaignType) { if !r.promotable() { // This path should not be hit (callers are supposed to check), but // better safe than sorry. r.logger.Warningf("%x is unpromotable; campaign() should have been called", r.id) } var term uint64 var voteMsg pb.MessageType if t == campaignPreElection { r.becomePreCandidate() voteMsg = pb.MsgPreVote // PreVote RPCs are sent for the next term before we've incremented r.Term. term = r.Term + 1 } else { r.becomeCandidate() voteMsg = pb.MsgVote term = r.Term } if _, _, res := r.poll(r.id, voteRespMsgType(voteMsg), true); res == quorum.VoteWon { // We won the election after voting for ourselves (which must mean that // this is a single-node cluster). Advance to the next state. if t == campaignPreElection { r.campaign(campaignElection) } else { r.becomeLeader() } return } var ids []uint64 { idMap := r.prs.Voters.IDs() ids = make([]uint64, 0, len(idMap)) for id := range idMap { ids = append(ids, id) } sort.Slice(ids, func(i, j int) bool { return ids[i] < ids[j] }) } for _, id := range ids { if id == r.id { continue } r.logger.Infof("%x [logterm: %d, index: %d] sent %s request to %x at term %d", r.id, r.raftLog.lastTerm(), r.raftLog.lastIndex(), voteMsg, id, r.Term) var ctx []byte if t == campaignTransfer { ctx = []byte(t) } r.send(pb.Message{Term: term, To: id, Type: voteMsg, Index: r.raftLog.lastIndex(), LogTerm: r.raftLog.lastTerm(), Context: ctx}) } }
-
另一方面,其他节点在接受到这个请求后,会首先比较接收到的
Term
是不是比自己的大,以及接受到的日志信息是不是比自己的要新,从而决定是否投票。这个逻辑我们还是可以从Step
函数中找到:func (r *raft) Step(m pb.Message) error { //... switch m.Type { case pb.MsgVote, pb.MsgPreVote: // We can vote if this is a repeat of a vote we've already cast... canVote := r.Vote == m.From || // ...we haven't voted and we don't think there's a leader yet in this term... (r.Vote == None && r.lead == None) || // ...or this is a PreVote for a future term... (m.Type == pb.MsgPreVote && m.Term > r.Term) // ...and we believe the candidate is up to date. if canVote && r.raftLog.isUpToDate(m.Index, m.LogTerm) { r.send(pb.Message{To: m.From, Term: m.Term, Type: voteRespMsgType(m.Type)}) } else { r.send(pb.Message{To: m.From, Term: r.Term, Type: voteRespMsgType(m.Type), Reject: true}) } } }
-
最后当candidate节点收到投票回复后,就会计算收到的选票数目是否大于所有节点数的一半,如果大于则自己成为leader,并昭告天下,否则将自己置为follower:
func (r *raft) Step(m pb.Message) error { //... switch m.Type { case myVoteRespType: gr := r.poll(m.From, m.Type, !m.Reject) switch r.quorum() { case gr: if r.state == StatePreCandidate { r.campaign(campaignElection) } else { r.becomeLeader() r.bcastAppend() } case len(r.votes) - gr: r.becomeFollower(r.Term, None) } }
Life of a Write Request
-
一个写请求一般会通过调用
node.Propose
开始,Propose
方法将这个写请求封装到一个MsgProp
消息里面,发送给自己处理。 -
消息处理函数
Step
无法直接处理这个消息,它会调用那个小写的step
函数,来根据当前的状态进行处理。-
如果当前是follower,那它会把这个消息转发给leader。
func stepFollower(r *raft, m pb.Message) error { switch m.Type { case pb.MsgProp: //... m.To = r.lead r.send(m) } }
-
-
Leader收到这个消息后(不管是follower转发过来的还是自己内部产生的)会有两步操作:
-
将这个消息添加到自己的log里
-
向其他follower广播这个消息
func stepLeader(r *raft, m pb.Message) error { switch m.Type { case pb.MsgProp: //... if !r.appendEntry(m.Entries...) { return ErrProposalDropped } r.bcastAppend() return nil } }
-
-
在follower接受完这个log后,会返回一个
MsgAppResp
消息。 -
当leader确认已经有足够多的follower接受了这个log后,它首先会commit这个log,然后再广播一次,告诉别人它的commit状态。这里的实现就有点像两阶段提交了。
func stepLeader(r *raft, m pb.Message) error { switch m.Type { case pb.MsgAppResp: //... if r.maybeCommit() { r.bcastAppend() } } } // maybeCommit attempts to advance the commit index. Returns true if // the commit index changed (in which case the caller should call // r.bcastAppend). func (r *raft) maybeCommit() bool { //... mis := r.matchBuf[:len(r.prs)] idx := 0 for _, p := range r.prs { mis[idx] = p.Match idx++ } sort.Sort(mis) mci := mis[len(mis)-r.quorum()] return r.raftLog.maybeCommit(mci, r.Term) }
From https://blog.betacat.io/post/raft-implementation-in-etcd/